Residential Fire Sprinkler Concerns
A Water Purveyor’s Perspective
October 4, 2012
Bill Kirkpatrick, Engineering Manager

Water Supplier Reliability Issues
- Water Supply
- Water Facilities
- Water Quality
- Cost

General Policy Issues
Balancing Competing Interests
- Service
 - Reliability
 - Flexibility
 - Quality
- Cost
 - “Home Rule”
 - Affordable
 - Universal
- Liability
 - Supply
 - Operational

Service
- Reliability
 - 24/7 x 150 years

Cost
- Home Rule - California has it all
 - Private
 - Individual
 - Corporation
 - Municipal
 - Special District / Agency

All agency’s issues include political considerations

Liability
- Supply Reliability -
 Need to build redundancy and reliability
- Operational Risk
 Issues with maintaining pressurized water pipe and appurtenances
Cost

- Affordability
 Essential service - public health - economic development - recreation - and public fire supply

- Universal
 Responsibility to serve equitably without administrative burden

Discussion

- Background
- Meter Sizing Study
- Recommendations
- Examples/Configuration
- Cost

Background

- SFM Task Force
 - Phase I - Water Supply
 - Phase II - Installation
 - Phase III - Training and Education
- Retrofitting
- Meter sizing

Background

- 2010 CRC, Section R313.1-5
- NFPA-13D
- Domestic allowance
- Pre-2011 practice vs. new code

Determining Meter Size

<table>
<thead>
<tr>
<th>Pre-2011 Practice</th>
<th>New Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Flow plus Total Peak Domestic Flow</td>
<td>Fire Flow plus 5 gpm Domestic Allowance</td>
</tr>
<tr>
<td>82 gpm (FF = 4 heads @ 20.5 gpm) + 20 gpm (Peak Domestic)</td>
<td>82 gpm (FF = 4 heads @ 20.5 gpm) + 5 gpm (Domestic Allowance)</td>
</tr>
<tr>
<td>102 gpm</td>
<td>2” meter</td>
</tr>
<tr>
<td>87 gpm</td>
<td>1.5” meter</td>
</tr>
</tbody>
</table>

EBMUD Meter Sizing Study

- Research
- Hydraulics
- Surveys
- Cost
Research – Domestic Allowance

- Toilet – 4 gpm
- Sink – 2 gpm
- Shower – 3 gpm
- Washing machine – 4 gpm
- Dishwasher – 3 gpm
- Irrigation – 10-15 gpm

Research – Domestic Allowance

American Water Works Association Research Foundation sponsored study: Residential End Uses of Water, Report No. 90781, 1999

• Only 20% of flows ≤ 5 gpm
• 90% of flows ≤ 15 gpm

Research – Domestic Allowance

Hydraulics – Meter Size Based on Flow

<table>
<thead>
<tr>
<th>Number of Sprinkler Heads</th>
<th>Flow per Sprinkler Head (gpm)</th>
<th>Total Sprinkler Flow (gpm)</th>
<th>Domestic Demand (gpm)</th>
<th>Total Flow (gpm)</th>
<th>Required Meter Size (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>15</td>
<td>30</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>26</td>
<td>15</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>34</td>
<td>15</td>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>40</td>
<td>15</td>
<td>55</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>69</td>
<td>15</td>
<td>84</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>92</td>
<td>15</td>
<td>107</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>115</td>
<td>15</td>
<td>130</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>32</td>
<td>138</td>
<td>15</td>
<td>153</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Maximum flow through 1-inch meter = 50 gpm
Maximum flow through 1.5-inch meter = 100 gpm

Hydraulics - Pressure loss

Assuming flow of 31 gpm

<table>
<thead>
<tr>
<th>1-inch lateral and meter</th>
<th>1.5-inch lateral and meter</th>
<th>2-inch lateral and meter</th>
<th>2.5-inch lateral and 1-inch meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>3.3</td>
<td>1.1</td>
<td>2.7</td>
</tr>
<tr>
<td>2.9</td>
<td>3.5</td>
<td>1.5</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Estimated Pressure Loss Through Service Lateral (Hazen-Williams)

Calculated Pressure Loss (psi) Through 30' Service Lateral	21.2	3.7	1.1	2.7
Estimation Pressure Loss Through Meter (psi)	2.9	1.0	0.5	2.9
Total Pressure Loss (psi) Through Service Lateral and Meter	24.1	4.7	1.5	6.6

Meter capacity (gpm)

| 50 | 100 | 180 | 50 |

Why 15 gpm?

- No study/data to support 5 gpm
- 5 gpm too low from water main to meter
- Typical flows 80% higher
- Irrigation flow / fire occurrence
- Code language
- Human / appliance reaction

- Estimate ~70% 1-inch meter regardless of 5 gpm or 15 gpm
 ~30% 1.5-inch
Hydraulics - Pressure loss

Assuming flow of 41 gpm (2 heads at 13 gpm + 15 gpm domestic)

- 1-inch lateral and meter
- 1.5-inch lateral and meter
- 2-inch lateral and meter
- 1.5-inch lateral and 1-inch meter

Calculated Pressure Loss (psi) Through 30’ Service Lateral (Hazen Williams)

<table>
<thead>
<tr>
<th>Service Lateral</th>
<th>26 gpm</th>
<th>31 gpm</th>
<th>34 gpm</th>
<th>41 gpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-inch lateral and meter</td>
<td>35.6 6.2 1.8 6.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5-inch lateral and meter</td>
<td>4.8 1.3 0.7 4.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-inch lateral and meter</td>
<td>40.5 7.7 2.5 11.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Estimated Pressure Loss Through Meter (psi) 4.8 1.5 0.7 4.8

Total Pressure Loss (psi) Through Service Lateral and Meter 40.5 7.7 2.5 11.1

- Meter capacity (gpm) 50 100 160 50

Backflow Preventers

<table>
<thead>
<tr>
<th>Backflow Device</th>
<th>Pressure Loss at Given Flow (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-inch</td>
<td>26 gpm 31 gpm 34 gpm 41 gpm</td>
</tr>
<tr>
<td>Reduced pressure</td>
<td>12.0 12.3 12.3 13.1</td>
</tr>
<tr>
<td>1.5-inch</td>
<td>4.7 4.7 4.7 5.0</td>
</tr>
<tr>
<td>Reduced Pressure</td>
<td>11.5 11.5 11.5 11.5</td>
</tr>
</tbody>
</table>

Data is from manufacturers’ specifications sheets:

1. Average of headlosses from 6 Fabco, Watts, and Wilkins 1-inch double check valves.
2. Average of headlosses from 11 Fabco, Watts, and Wilkins 1.5-inch reduced pressure valves.
3. Average of headlosses from 5 Fabco, Watts, and Wilkins 1-inch double check valves.
4. Average of headlosses from 10 Fabco, Watts, and Wilkins 1.5-inch reduced pressure valves.

Water Shut-off Risk

- What is fire probability given statistical opportunity?
 - Probability \(P_{off} = \frac{\text{# houses off}}{\text{total #EBMUD}} \)
 - \(\approx 5\% \)
 - Probability \(P_{fire} = \text{Chance is < 1 in 300 per year (NFPA)} \)
 - \(0.33\% \)
 - Probability \(= P_{off} \times P_{fire} \)
 - \(0.0165\% \)
Water Shut-off Cost vs. Risk

- Cost of **two** service configuration, no shut-off
- Additional service lateral (unpaved) and BFP ~ $1,700
- Monthly cost would increase + $12.60/mo. @ EBMUD
- Ten year PW = $12.60x12x10 = $1,512
- PW10 ~ $3,200
- PW60 ~ $10,800 for a near zero risk

1-inch Meter Examples

- **1.5-inch tap and lateral**
- **1-inch meter**
- **Examples**

 1-inch meter
 - 26 gpm (FF = 2 heads @ 13 gpm)
 - + 15 gpm (Domestic Allowance)
 - 41 gpm → 1" meter

 1.5-inch meter
 - 35 gpm (FF = 2 heads @ 17.5 gpm)
 - + 15 gpm (Domestic Allowance)
 - 50 gpm → 1" meter

Final Configuration

- Minimum 1.5-inch lateral with 1-inch meter for flows ≤ 50 gpm

 - Size based on FF + 15 gpm or the Total Peak Domestic Demand, whichever is greater

Special Case Reviews

- 1-inch lateral installed, no meter set
- Total flow just over 50 gpm => 1.5"
- Total flow just over 100 gpm => 2"
- Solutions?: Check pressures, reduce Sprinkler FF, or add domestic S-O valve

FY12 Monthly Meter Service Charges

<table>
<thead>
<tr>
<th>Meter Size</th>
<th>Monthly Meter Charge (including Seismic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5-inch Meter (former standard SFR combination meter size)</td>
<td>$35.32</td>
</tr>
<tr>
<td>1-inch Meter (new standard SFR combination meter size)</td>
<td>$21.27</td>
</tr>
<tr>
<td>5/8- or 3/4-inch Meter (most existing SFR without fire sprinklers)</td>
<td>$12.60</td>
</tr>
</tbody>
</table>
Cost Change

- No changes to EBMUD's Schedule of Rates and Charges

- Installation = $106 less for new configuration

- One-inch meter = $14.05 reduction in monthly charge from 1.5-inch meter

A Water Purveyors Perspective

- Thank you

- Any questions?